

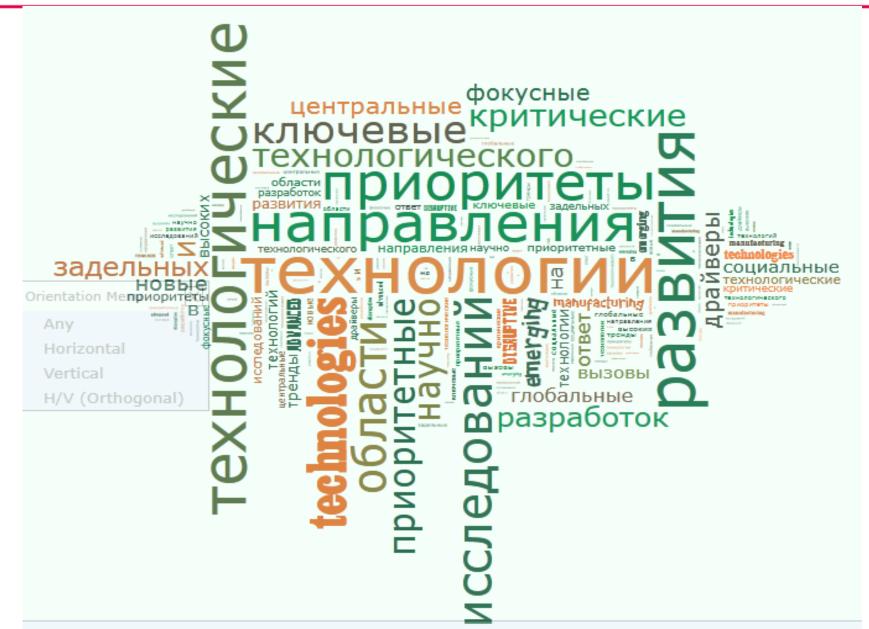
Оценка перспектив развития международного сотрудничества в области новых производственных технологий на уровне страны, региона, университета, компании

Толмачев Дмитрий Евгеньевич, к.э.н., директор Высшей школы экономики и менеджмента УрФУ

V Школа экономического анализа
Тюменская область на экономической карте России: настоящее и будущее,
г. Тюмень

Структура презентации

- 1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации
- 2. Рабочая гипотеза о влиянии факторов на уровень компетенций
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций



Тенденции и приоритеты в области научно-технологического развития

Облако слов для приоритетов научно-технологического развития

НПТ: зарубежные подходы к определению

Пол Фоулер (Paul Fowler) (National Association of Advanced Manufacturing, NACFAM):

Передовые производственные технологии (advanced technologies) широко используют компьютерные, высокоточные и информационные компоненты, интегрированные с высокопроизводительной рабочей силой, создавая систему, которая сочетает в себе преимущества массового производства и, в то же время, гибко настроена на необходимый в данный момент объем выпуска и обладает высокой степенью кастомизации с целью быстрого реагирования на потребности клиентов.

Manchester Institute of Innovation Research

Развивающиеся технологии (emerging technologies) — экспериментальные разработки, которые являются результатом последних достижений на стыке разных областей знания, быстро развиваются и имеют высокий инновационный потенциал со значимыми социальными и экономическими эффектами

Федеральное министерство экономики и энергетики ФРГ Индустрия 4.0

Технологические драйверы:

- 1) Киберфизические системы,
- 2) Интегрированные данные, потоки данных и big data,
- 3) Облачные технологии,
- 4) Аддитивные производственные процессы

McKinsey Global Institute выделил четыре основных характеристики, которыми должны обладать **прорывные производственные технологии** (disruptive technologies):

- высокая скорость изменения технологии,
- широкий потенциальный масштаб воздействия,
- большая экономическая ценность, которая может возникнуть

Новые производственные технологии: российская терминология

В Российской Федерации официальное определение термина «новые производственные технологии» отсутствует

Новыми технологиями для России считаются технологии, не имеющие отечественных аналогов.

Принципиально новыми признаются технологии, не имеющие отечественных и зарубежных аналогов, созданные (разработанные) впервые и обладающие качественно новыми характеристиками, отвечающими требованиям современного уровня или превосходящими его.

Критическая технология Российской Федерации - комплекс *межотраслевых* (междисциплинарных) *технологических решений*, которые создают предпосылки для дальнейшего развития различных тематических технологических направлений, *имеют широкий потенциальный круг инновационных приложений* в разных отраслях экономики и вносят в совокупности *наибольший вклад в решение важнейших проблем реализации приоритетных направлений развития науки, техники и технологий*.

Передовые производственные технологии - технологии и технологические процессы (включая необходимое для их реализации оборудование), управляемые с помощью компьютера или основанные на микроэлектронике и используемые при проектировании, производстве или обработке продукции (товаров и услуг) [Росстат, Методология к рубрике «Инновации»]

В отдельных документах понятие НПТ отождествляется с передовыми производственными технологиями (например, в докладе Д. Ливанова на заседании президиума Совета при Президенте Российской Федерации по модернизации экономики и инновационному развитию России 16 сентября 2014 года), либо с перспективными технологиями (в публикациях И. Дежиной, руководителя группы по научной и промышленной политике, Сколтех)

Перспективные производственные технологии определяются как комплекс процессов проектирования и изготовления на современном технологическом уровне кастомизированных (индивидуализированных) материальных объектов (товаров) различной сложности, стоимость которых сопоставима со стоимостью товаров массового производства, в том числе в странах с дешевой рабочей силой (И. Дежина, А. Пономарев)

Дорожная карта Technet Национальной технологической инициативы

Кросс-рыночное и кросс-отраслевое направление, обеспечивающее технологическую поддержку развития рынков НТИ и высокотехнологичных отраслей промышленности за счет формирования Цифровых, «Умных», Виртуальных Фабрик Будущего

PLM-СИСТЕМЫ

Цифровое моделирование и проектирование (CAD/CAM/CAE/CAO/HPC/PDM)

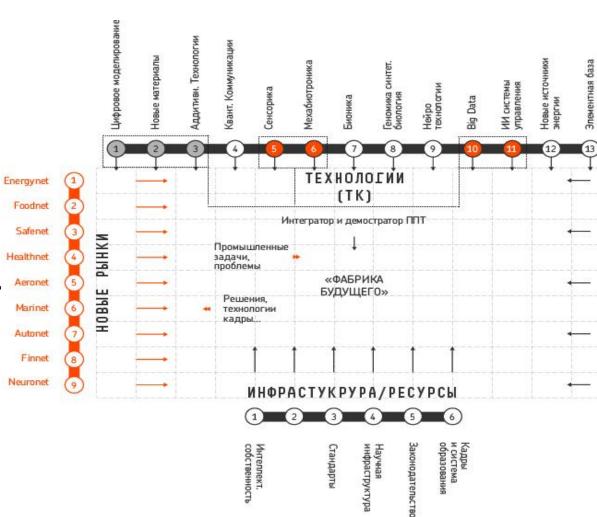
ИНДУСТРИАЛЬНЫЙ ИНТЕРНЕТ

Аппаратное обеспечение, серверы, системы хранения данных, межплатформенное программное обеспечение, приложения и сервис

АДДИТИВНЫЕ ТЕХНОЛОГИИ

Технологии трехмерной печати и цифрового производства

НОВЫЕ МАТЕРИАЛЫ


Биоинженерные материалы, передовые сплавы (суперсплавы), передовая керамика и сверхпроводники, передовые полимеры (синтетические непроводящие), органические полимеры для электроники, прочие передовые материалы для электроники, передовые покрытия, нанопорошки, наноуглеродные материаль нановолокна, тонкие пленки, передовые композиты

РОБОТОТЕХНИКА И МЕХАТРОНИКА

Системы ЧПУ, сервоприводы, серводвигатели и контроллеры. Системы оперативного управления производственными процессами на уровне цеха (МЕS-системы) и автоматизированные системы управления технологическими процессами (ICS-системы)

ИНФОРМАЦИОННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ПРЕДПРИЯТИЕМ

Системы ЧПУ, сервоприводы, серводвигатели и контроллеры. Системы оперативного управления производственными процессами на уровне цеха (МЕS-системы) и автоматизированные системы управления технологическими процессами (ICS-системы)

Анализ документов в области научно-технологического развития

Перечень приоритетов в области НПТ

50 документов 14 стран

Правительственные документы

- нормативные правовые акты,
- стратегии,
- документы министерств, консультативных органов

США, Германия, Франция, Великобритания, Норвегия, Швеция, Бельгия, Япония, Южная Корея, БРИКС.

Форсайты

- Россия: Прогноз научно-технологического развития России: 2030
- Германия: Forschungs- und Technologieperspektiven 2030 (Ergebnisband 2 zur Suchphase von BMBF-Foresight Zyklus II)
- Япония: 10-ый прогноз научно-технического развития NISTEP
- Южная Корея: S&T Foresight KISTEP
- Великобритания Future of manufacturing: a new era of opportunity and challenge for the UK
- Китай: "Technology Foresight towards 2020 in China"

Фонды и институты развития

- McKinsey Global Institute 12 потенциальных прорывных технологий,
- Массачусетский технологический институт ежегодно публикует список 10 прорывных технологий
- РWC Перспективные направления научных исследований и разработок
- АСИ Технологии, формирующие рынки
- Фонд Бортника фокусные тематики программы "Старт"

1082 технологии

Обработка списков приоритетных направлений научно-технологического развития методами машинного обучения

- Латентно-семантический анализ (LSA),
- Реализация алгоритма Latent Dirichlet allocation,
- Сингулярное разложение (SVD 2),
- Кластеризация по методу Уорда

476 технологии

Обработка списка технологий: контент-анализ и систематизация

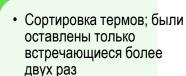
- Произведена разбивка на технологические блоки,
- Убраны содержательные повторы,
- Убраны технологии, не относящиеся к производственным (с/х, медицина, транспорт)
- Получена первичная экспертная оценка

102 технологии

«Ядро» приоритетов в области НПТ (102):

- 1. Энергетика (20)
- 2. Биотехнологии (11)
- 3. Новые материалы (26)
- 4. Робототехника (8)
 - 5. ИТ (37)
 - 6. Аддитивы (2)

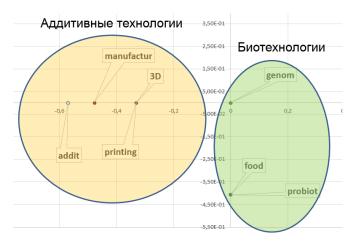
Обработка списков технологий методами машинного обучения


Реализация алгоритма латентносемантического анализа

- Удалены «стоп-слова» и «стоп-символы» (все союзы, частицы, предлоги и т.п.)
- Стемминг (приведение слова к исходной словоформе с помощью стеммера Портера, т.е. отсечения суффиксов)
- Исключение слов встречающихся в единственном экземпляре (опционально))

	China.txt	EU.txt	Europe.txt	GB.txt	Japan.txt
addit	0	0	1	1	0
agricultur	0	1	1	0	1
big	0	0	1	1	0
bio	0	0	0	0	2
biocatalysi	0	1	0	0	0
biocatalyt	0	0	0	0	0
biochip	0	0	0	0	0
bioconvers	0	1	0	0	0
bioeconomi	0	0	1	0	0
bioengin	0	0	0	0	0
biofuel	0	0	1	0	0
biohazard	0	0	0	0	1
biolog	0	2	0	2	0

Работа с термдокументной матрицей


- Полнотекстовый поиск технологий, содержащих данные термы
- Формирование списка технологий, содержащихся в двух и более документах

Группировка технологий

- Повторная реализация алгоритма LSA
- Сингулярное разложение полученной матрицы
- Визуализация технологий в семантическом пространстве
- Группировка технологий

Агрегированный запрос по термам "nano" и "materials"

Country	Document	Tech
UK	UK Growth Opportunities	Nanomaterials
UK	UK Growth Opportunities	Nanotechnologies
Germany	BMBF	Nanotechnology
RU	Prognoz NTR 2030	New materials and nanotechnology

Группировка схожих технологий

2

Терм-документная матрица

-								
	a1	a2	a3	a4	b1	b2	b3	b4
addit	1	0	1	1	0	0	0	0
agricultur	0	0	0	0	0	0	0	1
anim	0	0	0	0	0	0	0	1
biolog	0	0	0	0	1	0	0	0
design,	0	0	0	1	0	0	0	0
digit	0	0	0	1	0	0	0	0
engin	0	0	0	0	1	0	0	0
food	0	0	0	0	0	0	1	0
function	0	0	0	0	0	0	1	0
genet	0	0	0	0	1	0	0	0
genom	0	0	0	0	0	1	0	1
ingredi	0	0	0	0	0	0	1	0
manufactur	1	0	0	1	0	0	0	0
next-gener	0	0	0	0	0	1	0	0
plant	0	0	0	0	0	0	0	1
prebiotics	0	0	0	0	0	0	1	0
print	0	1	0	0	0	0	0	0
printing	0	0	0	1	0	0	0	0
probiotics	0	0	0	0	0	0	1	0
production	0	0	0	1	0	0	0	0
synbiotics	0	0	0	0	0	0	1	0
synthet	0	0	0	0	1	0	0	0
technolog	0	0	1	0	0	0	0	0

1

Список технологий:

Additive manufacturing (a1)

3D printing (a2)

Additive technologies (a3)

Digital additive manufacturing (3D printing, 3D design, 3D production) (a4)

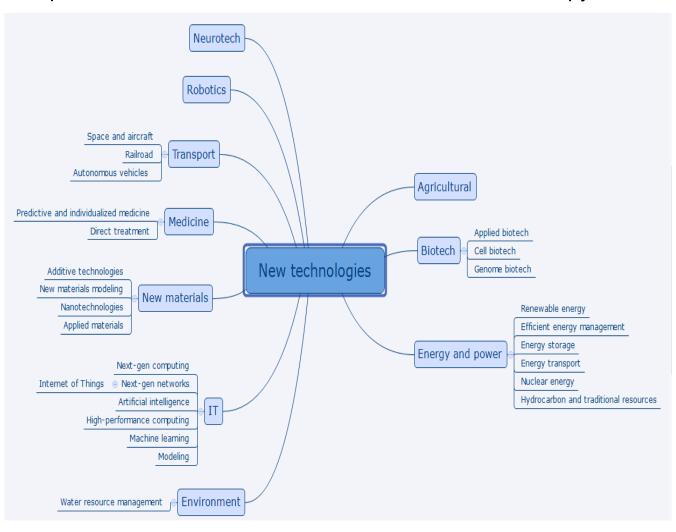
Genetic engineering / **synth**etic **biolog**y (b1)

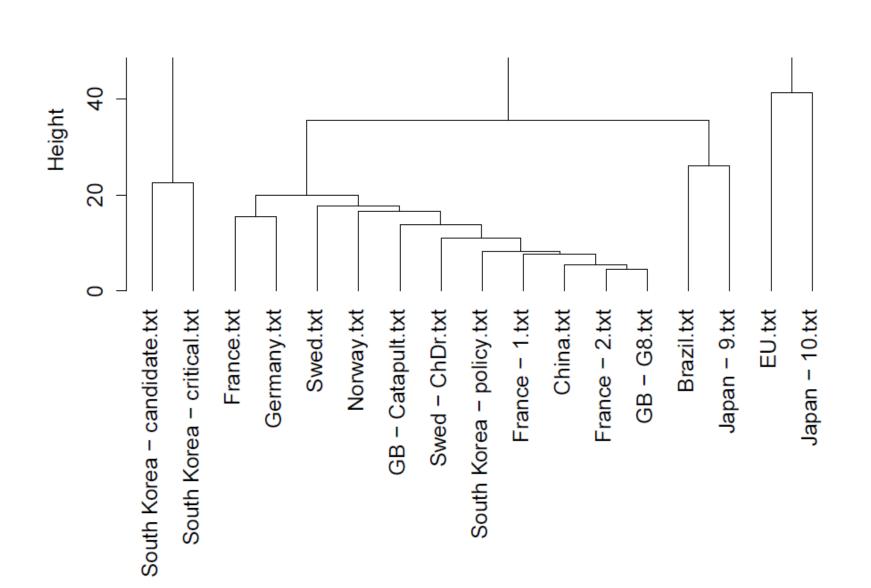
Next-generation **genom**ics (b2)

Prebiotics, probiotics, synbiotics, functional foods and ingredients (b3)

Genomics of agricultural plants and animals (b4)

(жирным – после процедуры стемминга)


3


Терм-документная матрица после (SVD-2)

	V1	V2				
addit	-0,5699	-8,72E-33				
agricultur	0	-1,19E-16				
anim	0	-1,19E-16				
biolog	0	-5,55E-33				
design,	-0,33119	-7,40E-33				
digit	-0,33119	1,48E-32				
engin	0	1,85E-33				
food	0	-0,40824829				
function	0	-0,40824829				
genet	0	1,85E-33				
genom	0	-5,93E-17				
ingredi	0	-0,40824829				
manufacti	-0,47741	8,72E-33				
next-gene	0	5,93E-17				
plant	0	-1,19E-16				
prebiotics	0	-0,40824829				
print	1,11E-16	0				
printing,	-0,33119	-3,70E-33				
probiotics	0	-0,40824829				
productio	-0,33119	-3,70E-33				
synbiotics	0	-0,40824829				
synthet	0	1,85E-33				
technolog	-0,09248	-2,47E-32				

Mind-map технологий

Всего был получен список из 476 технологий, которые были сгруппированы с помощью алгоритма Latent Dirichlet allocation в 10 тематических групп

Определение и типологизация НПТ

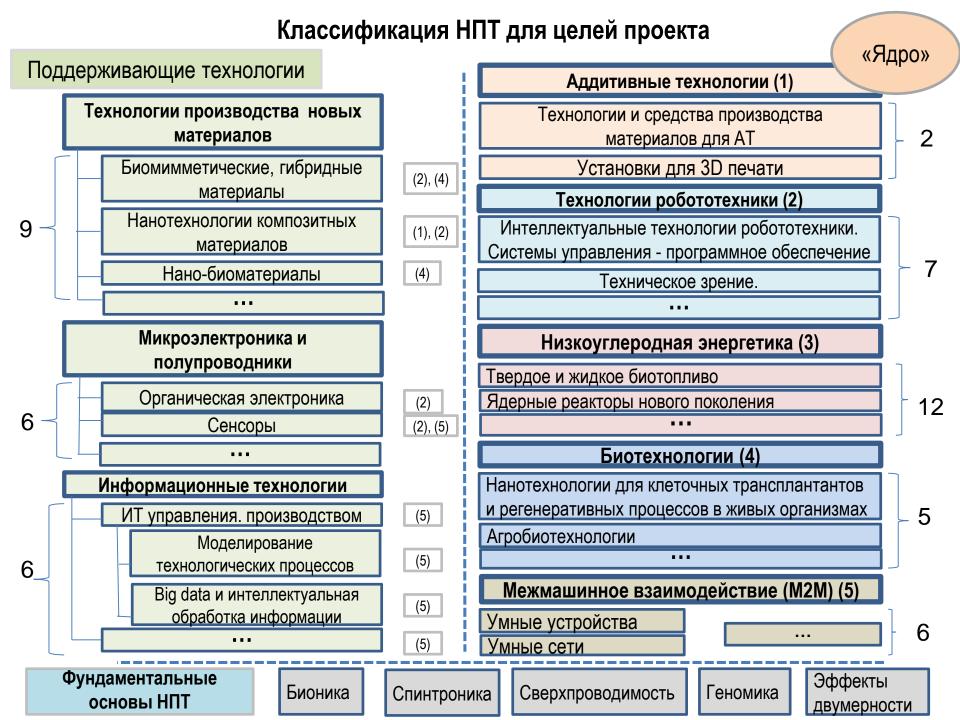
Технологии, необходимые для развития «ядра». Данные технологии могут относиться к одной и более технологиям «ядра».

Примером связки «поддерживающая» технология – «ядро» является технологии производства сенсоров для робототехники

Технологические направления, принципиально изменяющие способ производства и кардинально увеличивающие его эффективность. Они основаны на прорывных научных разработках и ориентированы на кастомизацию конечного продукта и/или придание ему новых потребительских свойств.

К ним можно отнести аддитивные технологии, технологии робототехники, низкоуглеродную энергетику, биотехнологии, межмашинное взаимодействие

Поддерживающие технологии


«Ядро»

Фундаментальные основы новых производственных технологий

базовые физические явления, которые могут служить источниками экономически значимых технологий

Структура презентации

1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации

2. Рабочая гипотеза о влиянии факторов на уровень компетенций

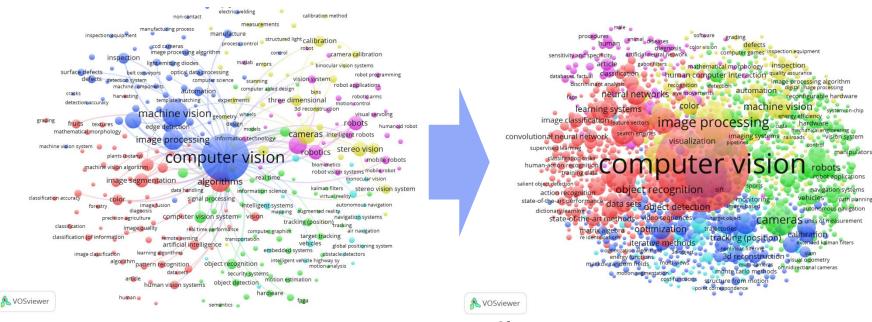
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций

Как оценить

- уровень компетенций
- потенциал для коллабораций научных групп университетов, научно-исследовательских организаций, компаний в узких сегментах HTP, относящихся к сфере новых производственных технологий

Комплексный обзор компетенций в области НПТ

Аналитический обзор компетенций в области НПТ	Содержание обзора компетенций
Анализ публикационной активности	 Разработан и реализован алгоритм выявления ключевых слов Произведен анализ динамики публикационной активности, распределения публикаций по странам; выявлены крупнейшие организации России и мира, разрабатывающие конкретную НПТ Для российских и иностранных институций приведены показатели: кол-ва публикаций в рамках конкретной тематики, кол-во цитат, авторов, публикующихся по тематике, уровень взвешенного цитирования на статью.
Анализ ландшафта международной патентной активности	Для каждой из отобранных технологий проведен анализ патентных ландшафтов по следующим параметрам: <i>Технологические показатели</i> : общее количество патентов, динамика патентной активности, использование технологий в отраслях, индекс цитирования, включая прямое и обратное цитирование <i>Конъюнктурные показатели</i> : распределение заявителей по странам подачи первой заявки; распределение патентов по заявителям; патентная кооперация; соотношение патентной активности компаний и университетов
Анализ научных грантов, выполняемых российскими исследователями в составе международных научных коллективов	РНФ, РФФИ, Horizon – 2020 Анализ выигранных заявок по направлениям НПТ Составлены матрицы потенциальных и действующих коллабораций по направления НПТ в разрезе институций
Анализ заявок российских организаций, поданных в рамках проведенных конкурсов Минобрнауки России по мероприятиям 2.1 и 2.2 по ПП РФ № 426	Анализ поддержанных проектов в разрезе НПТ Матрицы потенциальных и действующих коллабораций по направления НПТ в разрезе институций
Анализ российских и международных кластеров	Источники данных: российская кластерная обсерватория Зарубежные кластеры: данные Европейского Секретариата Кластерного Анализа, открытые источники


Структура презентации

- 1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации
- 2. Рабочая гипотеза о влиянии факторов на уровень компетенций
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций

Анализ публикационной активности в сфере машинного зрения: формирование поискового образа

 Формирование ключевых слов поискового образа по направлению НПТ для включения анализ более широкое число публикаций

Ключевые слова

Machine Vision Vision System

Период С 2010 года

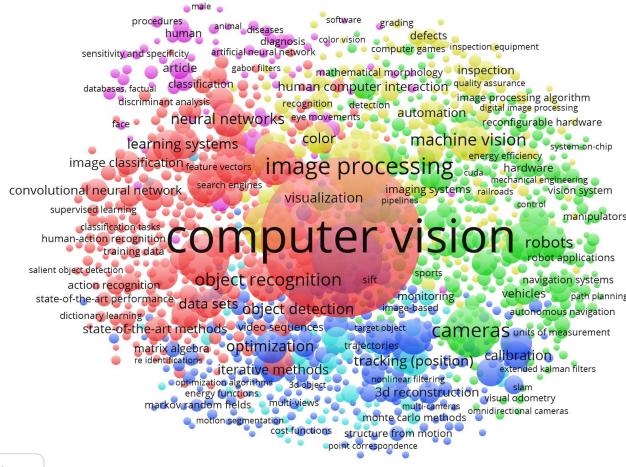
Итог 9947 статей

Ключевые слова

Machine Vision Vision System Robot vision Computer vision

Период С 2010 года

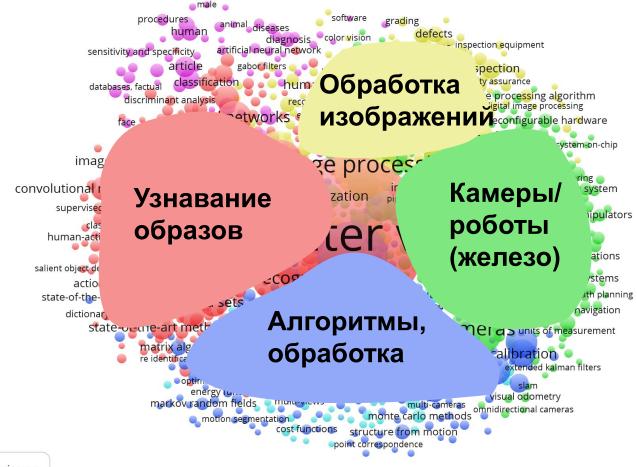
Предметные области


Инженерные науки Компьютерные науки Физика и астрономия Математика

Итог 39 589 статей

Анализ публикационной активности в сфере машинного зрения: формирование поискового образа -2

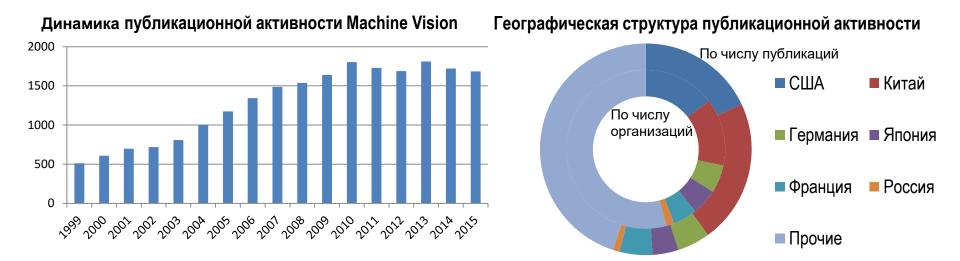
- Формирование ключевых слов поискового образа по направлению НПТ для включения анализ более широкое число публикаций
- Анализ ключевых слов и их кластеризация





Анализ публикационной активности в сфере машинного зрения: результат кластеризации ключевых слов

- Формирование ключевых слов поискового образа по направлению НПТ для включения анализ более широкое число публикаций
- Анализ ключевых слов и их кластеризация
- Выделение смежных для рассматриваемого направлений тем-технологий



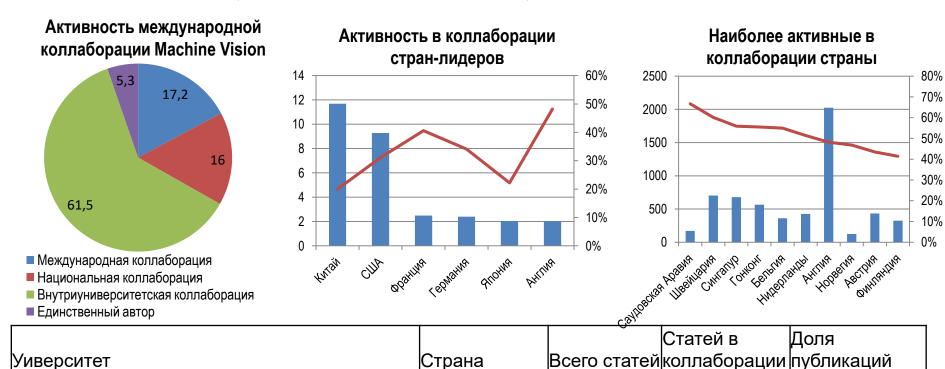
Оценка компетенций российских и иностранных организаций в сфере машинного зрения: результаты анализа публикаций

- Формирование ключевых слов поискового образа по направлению НПТ для включения анализ более широкое число публикаций
- Анализ ключевых слов и их кластеризация
- Выделение смежных для рассматриваемого направлений тем-технологий
- Анализ получившейся выборки публикаций

Institution	Country	Publications	Citations	Authors	Field-Weighted Citation Impact	
Microsoft USA	USA	432	8089	277		8,1
Tsinghua University	China	398	2794	595		3,25
Carnegie Mellon University	USA	378	2987	378		3,92
Chinese Academy of Sciences	China	359	1147	605		2,21
ETH Zurich	Switzerland	330	3139	324		3,42
Zhejiang University	China	300	1413	539		1,68

University of Bergen

University of Twente


UTS University of Technology Sydney

Shenzhen Institute of Advanced Technology

Max Planck Institute for Intelligent Systems

Международное научное сотрудничество в сфере машинного зрения: результаты анализа публикационной активности

- Формирование ключевых слов поискового образа по направлению НПТ для включения анализ более широкое число публикаций
- Анализ ключевых слов и их кластеризация
- Выделение смежных для рассматриваемого направлений тем-технологий
- Анализ получившейся выборки публикаций
- Анализ активности университетов/организаций в международных коллаборациях

Norway

China

Australia

Germany

Netherlands

25

92

88

47

31

<u>25</u> 122

118

64

44

100,0

75,4

74,6

73,4

70,5

Оценка компетенций российских и иностранных университетов в приоритетных направлениях НПТ

- Формирование ключевых слов поискового образа по направлению НПТ для включения анализ более широкое число публикаций
- Анализ ключевых слов и их кластеризация
- Выделение смежных для рассматриваемого направлений тем-технологий
- Анализ получившейся выборки публикаций
- Анализ активности университетов/организаций в международных коллаборациях
- Включение результатов в единую базу данных для оценки возможностей коллаборации

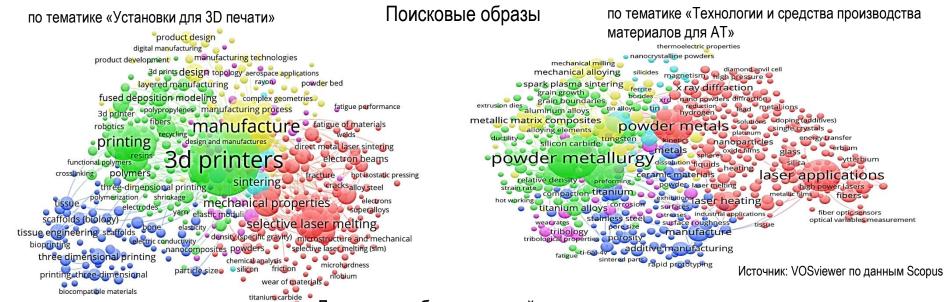
Активность университета

- Количество статей по узкой теме (Машинное зрение)
- Количество статей в сфере (Роботехника)

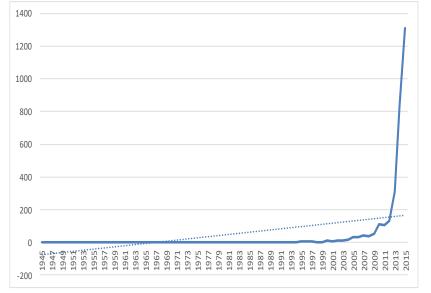
Опыт университета в коллаборациях

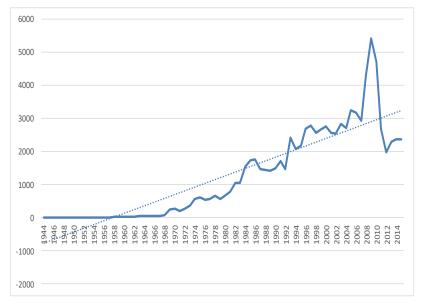
- Статей в коллаборации по узкой теме (Машинное зрение)
- Статей в коллаборации в сфере (Роботехника)

Цитируемость статей университета

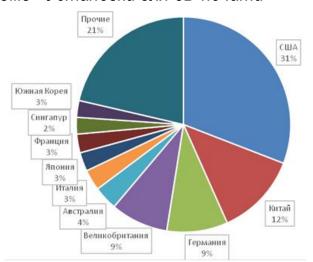

- Взвешенный индекс цитирования (FWCI) по узкой теме (Машинное зрение)
- Взвешенный индекс цитирования (FWCI) в сфере (Роботехника)

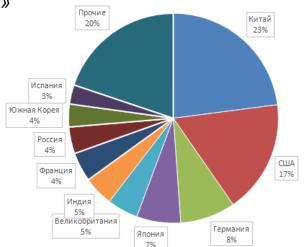
Опыт работы университета с Россией (для иностранных университетов)


- Взвешенный индекс цитирования (FWCI) по узкой теме (Машинное зрение)
- Взвешенный индекс цитирования (FWCI) в сфере (Роботехника)
- Статей с российским университетом



Аддитивные технологии: поисковые образы и динамика публикационной активности




Оценка компетенций российских и иностранных организаций в сфере аддитивных технологий: результаты анализа публикаций

Страны-лидеры по количеству публикаций

по теме «Установки для 3D печати»

по теме «Технологии и средства производства материалов для AT»

Организации-лидеры в мире по количеству публикаций

по теме «Установки для 3D печати»

Nº п/ п	Организация	Страна	Кол-во публикаци й, ед.	Кол-во цитирований, ед.
1.	Nanyang Technological University	Сингапур	59	272
2.	University of Erlangen-Nuremberg	Германия	51	134
3.	Pennsylvania State University	США	51	255

«Технологии и средства пр-ва материалов для АТ»

Nº п/ п	Организация	Страна	Кол-во публикац ий, ед.	Кол-во цитирован ий, ед.
1.	Central South University	Китай	199	622
2.	University of Science and Technology Beijing	Китай	179	441
3.	CNRS	Франция	152	883

Российские организации, публикующие статьи

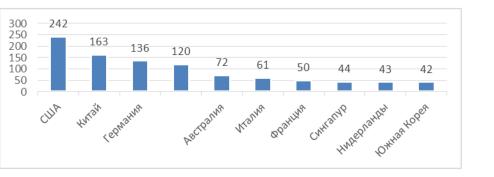
по теме «Установки для 3D печати»

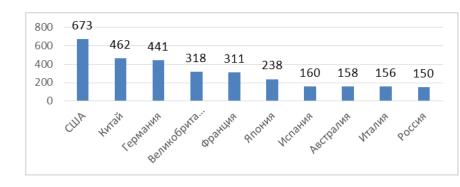
Nº	Организация	Кол-во	Кол-во
_п/п	Организация	публикаций, ед.	цитирований, ед.
1.	Tomsk Polytechnic University	8	1
2.	RAS	8	1

«Технологии и средства пр-ва материалов для АТ»

	•	•	
Nº	Организация	Кол-во	Кол-во
п/п	Организация	публикаций, ед.	цитирований, ед.
1.	RAS	138	256
2.	Moscow Engineering Physics Institute	37	44

Международное научное сотрудничество в сфере аддитивных технологий: результаты анализа публикаций


Статистика публикационной активности в рамках внутрироссийского и международного сотрудничества в области аддитивных технологий


Установки для 3D печати

Metric		Publications	Citations	Citations per Publication	Field-Weighted Citation Impact
International collaboration	16.0%	670	2,713	4.0	2.49
Only national collaboration	17.7%	742	1,776	2.4	1.76
Only institutional collaboration	55.2%	2,310	5,113	2.2	1.46
Single authorship (no collaboration)	11.0%	460	674	15	115

Технологии и средства производства материалов для AT

Metric		Publications	Citations	Citations per Publication	Field-Weighted Citation Impact
■ International collaboration	17.0%	2,324	12,488	5.4	1.29
Only national collaboration	21.7%	2,955	11,670	3.9	0.99
Only institutional collaboration	54.5%	7,439	21,175	2.8	0.81
Single authorship (no collaboration)	6.8%	924	1,548	1.7	0.97

Российские организации наиболее активно сотрудничают с организациями США, Китая, Германией (более 40% всех партнеров российских организаций)

Структура презентации

- 1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации
- 2. Рабочая гипотеза о влиянии факторов на уровень компетенций
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций

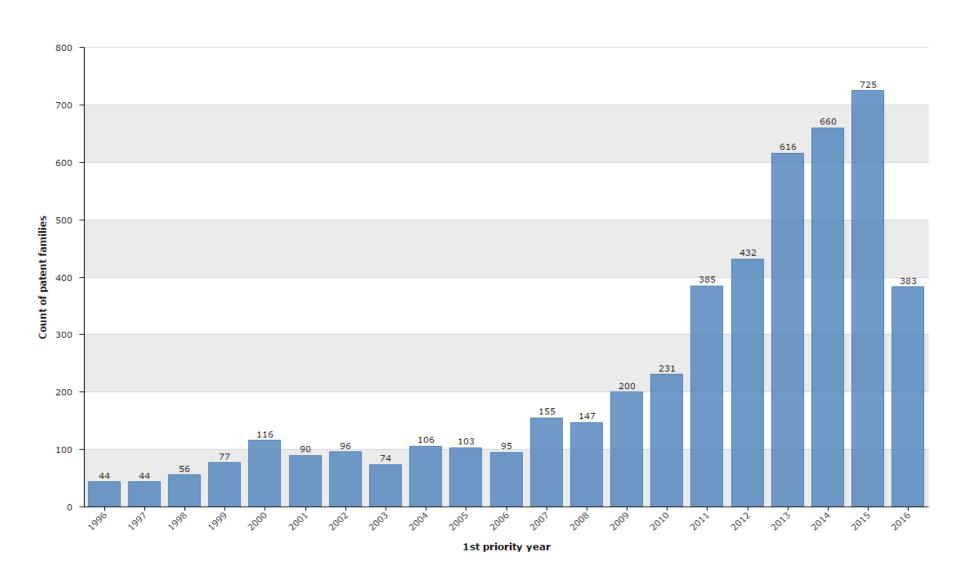
Показатели патентной активности

Общее количество патентов Динамика патентной активности Использование технологий в отраслях Индекс цитирования Распределение заявителей по странам Распределение патентов по заявителям Правовой статус патентов

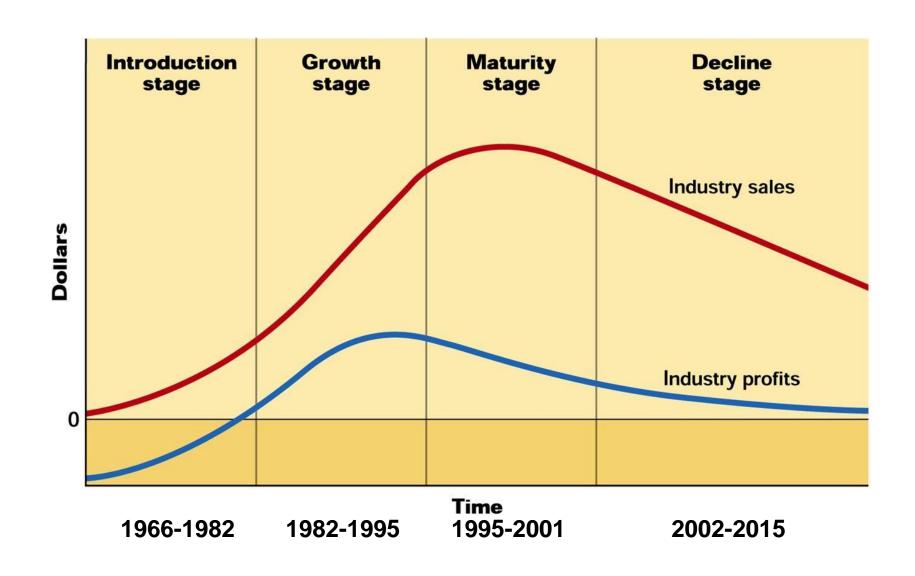
Примеры поисковых запросов для технологии «машинное зрение»

Nº	Технология	Ключевые слова поиска	МПК	Результаты
1	machine vision	Machine vision		5061
2	autonomous systems	Autonomous or mobile robot	B25J	3695
3	flexible manufacturing cell	flexible manufacturing or machining cell		782
4	service and swarm robotics	Service robot		897
5	self-learning robots	learn* and (robot or machine)	G06N-003	1313
6	robots that teach each other	Artificial intelligence	G06N-003	332
7	intelligent robot technology; control systems; software	control system and robot	G05B	2554
8	intelligent robot technology; control systems; hardware	control device and robot	B25J-013	2383

Облако ключевых слов для технологии «машинное зрение»

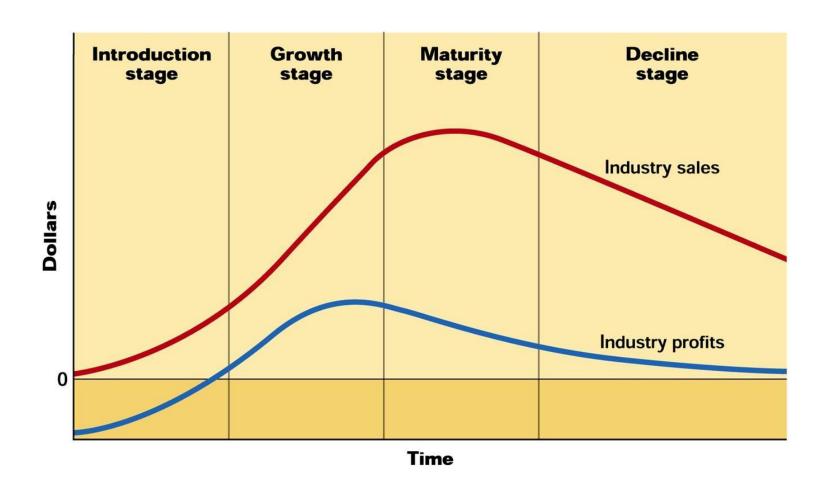

Distribution of search results by Most cited concepts

Vision (688) | Machine vision (625) | Camera (562) | Machine (493) | Image acquisition (311) |


Inspection (286) | Pixel (263) | Acquisition (219) | Acquired image (208) | Video camera (199) | Illumination (191) | Vision inspection (177) | Workpiece (168) | Machine vision inspection (161) | Detection (159) | Imaging (152) | Defect (147) | Captured image (136) | Computer (130) | Calibration (127) | Edge (123) | Article (118) | Coordinate (117) | Template (107) | Estimation (102) | Vision processor (97) | Focus (93) | Robot (93) | Light source (91) | Candidate (89) |

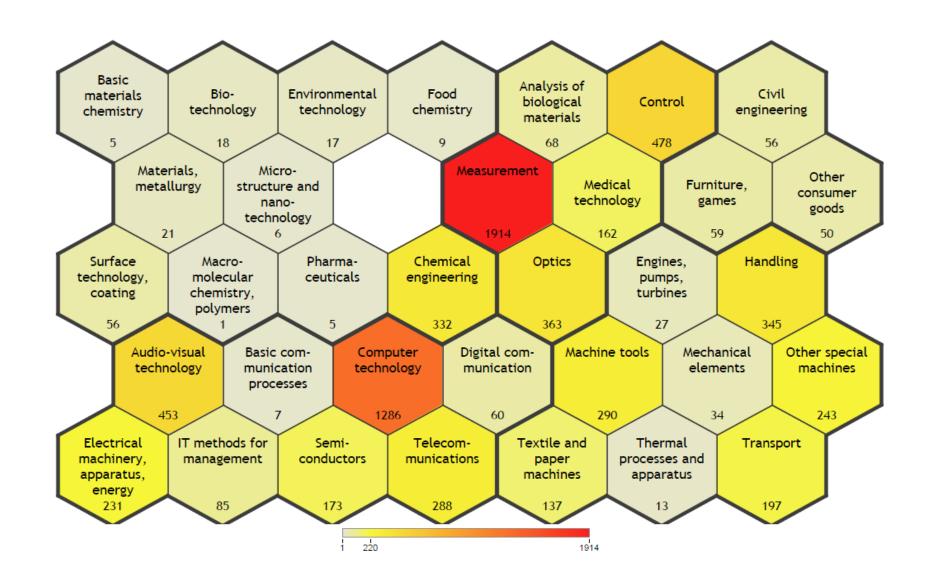
Динамика патентной активности технологии «машинное зрение»

Жизненный цикл CD



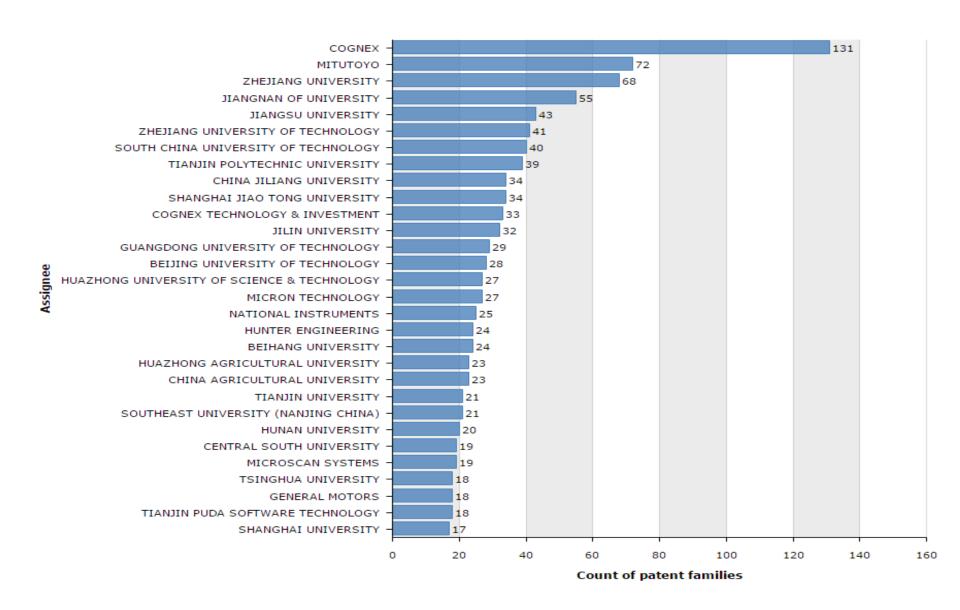
Динамика патентования для CD

Жизненный цикл тонкопленочных транзисторов (ЖК- дисплеев)

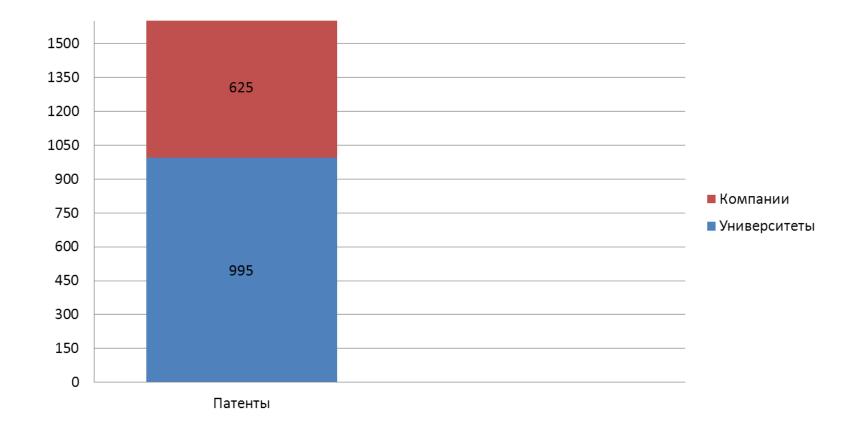


Кол-во патентов для TFT-LCD

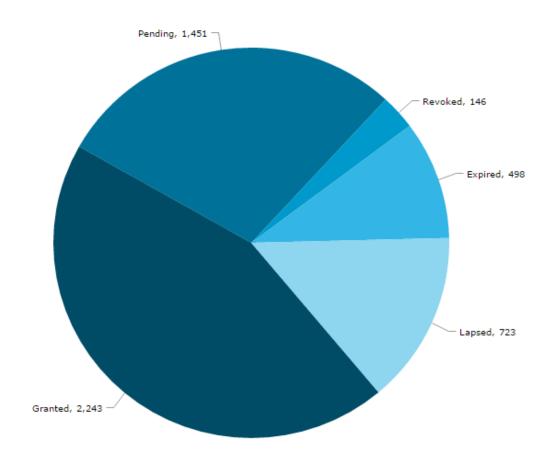
Распределение технологии «машинное зрение» по областям применения



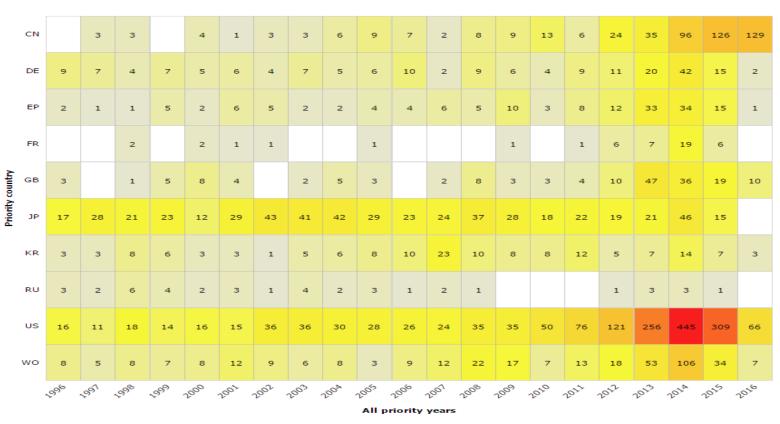
Распределение заявителей по странам подачи первой заявки


Страна приоритета	Кол-во	Страна приоритета	Кол-во	
CN	3243	NZ	10	
US	1352	ES	8	
KR	99	AU	6	
DE	82	FR	6	
GB	69	IL	5	
EP	64	UA	3	
TW	38	NL	3	
FI	37	MY	3	
CA	22	22 BR		
JP	18	SK	2	
RU	16	TH	2	
IN	14	BG	1	
SG	13	GR	1	

Распределение патентов технологии «машинное зрение» по заявителям



Соотношение патентной активности компаний и университетов в области «машинного зрения»


Правовой статус патентов в области «машинного зрения»

Анализ патентной активности для аддитивных технологий

География патентования в области аддитивных технологий.

Глубина поиска — 20 лет,

CN — Китай DE — Германия, EP — Европейский союз, FR — Франция, GB — Великобритания, JP — Япония, KR — Корея, RU — Россия, US — США, WO — Международная заявка

Организации-лидеры количеству патентов в области аддитивных технологий

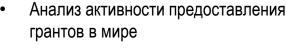
Компании-патентообладатели в мире

№ п/п	Название	Кол-во патентов	Кол-во цитирований для компании
1.	UNITED TECHNOLOGIES	116	36
2.	STRATASYS	80	91
3.	GENERAL ELECTRIC	47	36
4.	HITACHI CHEMICAL	42	
5.	RENISHAW	40	
6.	SIEMENS	28	
7.	IBIDEN	27	
8.	PANASONIC	26	
9.	SUMITOMO METAL MINING	25	
10.	BAE SYSTEMS	24	
11.	HEWLETT PACKARD	24	
12.	MTU AERO ENGINES	23	
13.	REYNOLDS TOBACCO	23	
14.	ARCAM	22	
15.	SIEMENS ENERGY	22	31

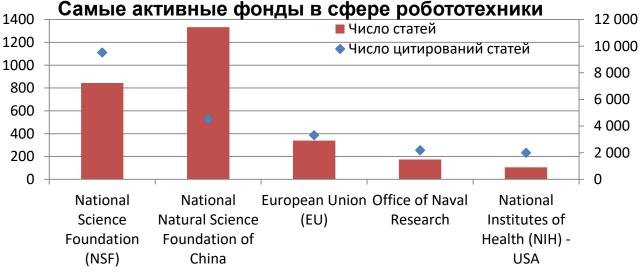
Компании-заявители из РФ (в среднем 1 разработка в технологический цикл)

- Алтайский государственный технический университет
- Самарский государственный аэрокосмический университет им. ак. Королева,
- Сибирский индустриальный университет,
- НПО Энергомаш им. Глушко,
- Уральская сельскохозяйственная академия,
- Газпромнефть,

- ...



Структура презентации


- 1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации
- 2. Рабочая гипотеза о влиянии факторов на уровень компетенций
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций

Анализ международных научных грантов с участием российских научных групп

- Анализ участия российских организациях в грантах
- Анализ успешности потенциальных партнеров в привлечении грантов
- Анализ наличия опыта потенциальных партнеров в работе с российскими университетами

Фонды, давшие гранты в сфере робототехники российским организациям

СПбГУ – активная работа в грантах с Австралией (University of New South Wales), Швецией (Umea University) и Норвегией (Norwegian University of Science &
Technology)
PAH - Consejo Superior de Investigaciones Cientificas

MΓУ - Centre National de la Recherche

СПбГПУ - Gwangju Institute of Science &

Scientifique

Technology

		•	
			Доля
	Количество	Число	процитированных
, Фонд	статей	цитат	документов
Australian Research Council	6	22	83.33%
Russian Foundation for Basic Research	4	13	75%
Ministry of Education and Science, Russian			
Federation	2	<u>'</u> 0	0%
Federal Agency for Science & Innovations			
(FASI)	1	. 4	100%
European Union (EU)	1	. 25	100%
Swedish Research Council	1	. 4	100%
Ministry of Education, Science and			
Technology, Republic of Korea	1	0	0%
Consejo Superior de Investigaciones Cientificas	;		
(CSIC)	1	. 0	0%
National Research Foundation of Korea	1	0	0%

Структура презентации

- 1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации
- 2. Рабочая гипотеза о влиянии факторов на уровень компетенций
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций

Анализ кластеров в области НПТ

- Зачем рассматривать кластеры? Высокая инновационная ориентированность, совместная деятельность компаний и университетов там, где осуществляется или ожидается "прорыв" в области конкретных технологий
- Основная цель: выделение университетов, входящих в крупные международные кластеры, для дальнейших коллабораций (в каждой группе НПТ)
- **База кластеров:** на основании наличия метки **Bronze Label** Европейского Секретариата Кластерного Анализа (страны Европы) + несколько крупных кластеров США, Сингапура, Мексики.
- Методология **Bronze Label**: Анализ по **36** индикаторам, включая структуру, управление, стратегию, финансирование, услуги, взаимодействие участников, позиционирование (На основе интервью с руководителем кластерной организации).

Итого в базе:

	биотехноло гии	энергетика	Новые материалы	ИТ	Робототехни ка	Аддитивные технологии
Всего кластеров	16	16	13	40	7	6
С бронзовой меткой	9	15	9	40	2	3
Общее число университетов	61	60	41	117	38	19

Кластеры в области робототехники: структура базы данных

Страна	Кластер	Специализация	Университеты	∑ участни ков	∑ универ ситетов	∑ компа ний
Нидерланды	The Foundation Kennispark Twente	Мехатроника, высокотехнологичное оборудование	The University of Twente, Saxion University of Applied Sciences	425	2	400
США	The MassTLC Robotics Cluster	технологии в сфере обороны, судоходства, медицины, промышленности, индивидуальных и обучающих роботов).	University of Rhode Island, University of Connecticut, Brown University, Umass Dartmouth, Yale University, Olin College of Engineering	182	17	150
Германия	Der Cluster Mechatronik & Automation e.V.	Мехатроника	Universität Erlangen, Technische Universität München, Technische Hochschule Nürnberg, Hochschule Amberg, Hochschule Augsburg, Hochschule München, Hochschule Würzburg	182	7	157
Дания	RoboCluster	Роботы и технологии автоматизации	Aarhus Maskinmesterskole, Professionshøjskolen University College Nordjylland	163	2	145
Германия	microTEC Südwest	Интеллектуальные сервисные роботы	Hochschule Esslingen, Hochschule Furtwangen, Hochschule Karlsruhe, Hochschule Niederrhein, Hochschule Offenburg, Universität Stuttgart, University Ulm	110	7	85
Дания	Odense Robotics	Совместные роботы	University of Southern Denmark, Danish Technological Institute	95	2	80
Франция	Aquitaine Robotics	индивидуальные роботы, промышленные роботы	IUT GMP - Université de Bordeaux	70	1	64

Структура презентации

- 1 Приоритеты в области научно-технологического развития: подходы к определению и идентификации
- 2. Рабочая гипотеза о влиянии факторов на уровень компетенций
- 2.1 Анализ публикационной активности по проблематике НПТ
- 2.2 Анализ ландшафтов патентной активности
- 2.3 Анализ международных научных грантов с участием российских научных групп
- 2.4 Анализ российских и международных кластеров
- 3. Модель выявления и оценки действующих и потенциальных международных научных коллабораций

Модель выявления и оценки действующих и потенциальных международных научных коллабораций

Переменные модели выявления действующих и перспективных научных коллабораций

Наукометрический блок

- Число статей по теме
- Число статей в сфере
- FWCI по теме
- FWCI в сфере
- Статей в коллаборации по теме
- Статей в коллаборации в сфере
- Статей в коллаборации с РФ по теме
- Статей в коллаборации с РФ в сфере
- Статей с российским университетом

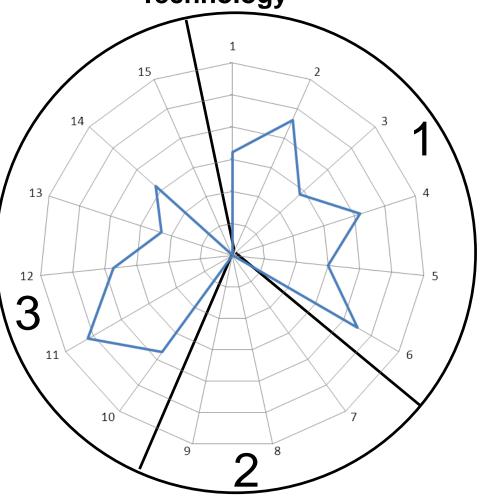
Блок по патентному анализу

- Количество патентов по теме
- Количество патентов в сфере
- Число цитирований по теме
- Число цитирований в сфере
- Кол-во действующих патентов по теме
- Кол-во действующих патентов в сфере

Вхождение научной организации/вуза в кластер

Описание кластера (участники, структура, позиции)

Информация о полученных грантах, совместных с заруб. организациями грантах


Кол-во международных грантов, в тч совместно с росс. участниками, результативность

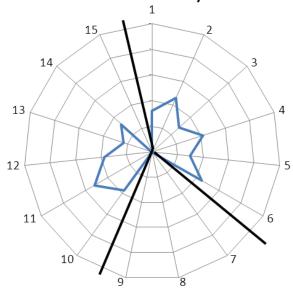
Модель выявления и оценки действующих и потенциальных международных научных коллабораций

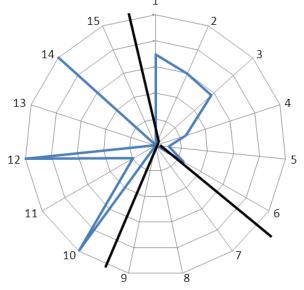
Тубликации

- 1. Число статей по теме
- 2. Число статей в сфере
- 3. FWCI по теме
- 4. FWCI в сфере
- 5. Статей в коллаборации по теме
- 6. Статей в коллаборации в сфере

7. Стате 8. Стате 9. Стате ф по теме

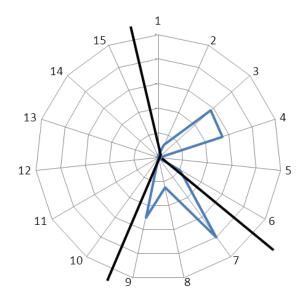
- 7. Статей в коллаборации с РФ по теме
- 8. Статей в коллаборации с РФ в сфере
- 9. Статей с российским университетом по теме

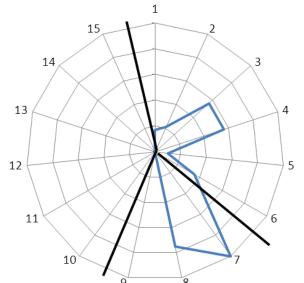

ЕНІЫ


- 10. Количество патентов по теме
- 11. Количество патентов в сфере
- 12. Число цитирований по теме
- 13. Число цитирований в сфере
- 14. Кол-во действующих патентов по теме
- 15. Кол-во действующих патентов в сфере

Сопоставление потенциальных зарубежных коллабораторов

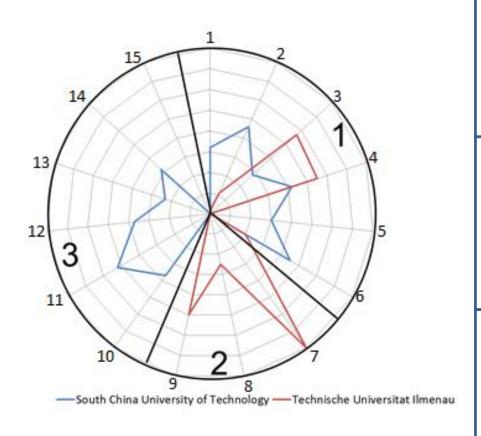
South China University of Technology


Zhejiang University



Technische Universitat Ilmenau

University of New South Wales



Сопоставление потенциальных зарубежных коллабораторов

Публикации

1. Число статей по теме

2. Число статей в сфере

3. FWCI по теме

4. FWCI в сфере

5. Статей в коллаборации по теме

6. Статей в коллаборации в сфере

7. Статей в коллаборации с РФ по теме

8. Статей в коллаборации с РФ в сфере

9. Статей с российским университетом по теме

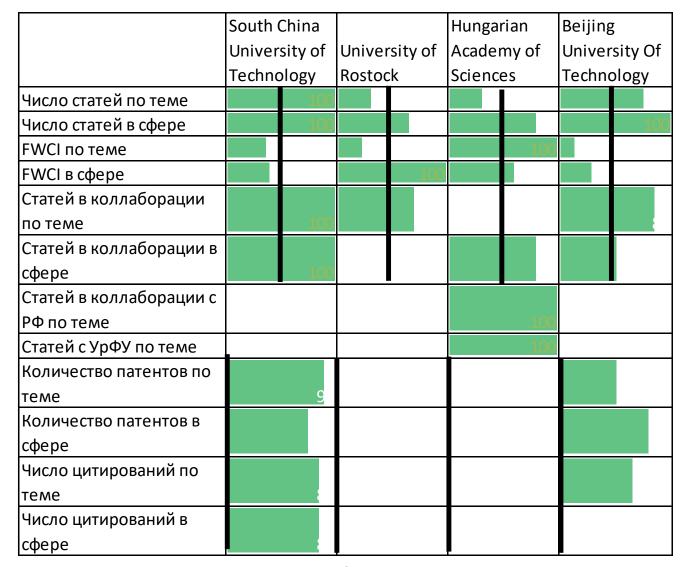
Опыт рпаботы с РФ

Татенты

11. Количество патентов в сфере

12. Число цитирований по теме

10. Количество патентов по теме


13. Число цитирований в сфере

14. Кол-во действующих патентов по теме

15. Кол-во действующих патентов в сфере

Потенциал коллаборации для УрФУ по теме «Сервисная и групповая робототехника»

Модель
позволяет
проводить
сравнительный
анализ
университетов по
выделенным
параметрам

Черная линия – уровень УрФУ